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Abstract. We study the critical frontiers and the high- and low-temperature asymptotic 
behaviour of the Potts model two-site correlation function for several Sierpinski carpets 
with fractal dimension lying between one and two. We simulate the Sierpinski carpets by 
means of appropriate hierarchical lattices, obtaining from their basic cells the two graphs 
(among others) that arise from the anisotropic bond-moving schemes. They correspond 
to the asymptotic high- and low-temperature dominant terms for the hierarchical lattice 
two-site correlation function exact result. By taking the infinite limit size of the basic cell 
these asymptotic behaviours tend to those of the Sierpinski carpets. It  is then possible to 
compare them with similar results obtained from analytical extension to d < 2 of the 
hypercubic lattice. Our results indicate that these asymptotic behaviours do not always 
coincide, suggesting that possibly we may not identify the Sierpinski carpets exhibited by 
Gefen et a /  as a correct implementation of the analytical extension of hypercubic lattices. 

1. Introduction 

The study of critical phenomena on fractal objects is a problem of current research 
(Gefen et a1 1980, 1981, 1983a, 1984, Havlin er a1 1983, Suzuki 1983, Bhanot er a1 
1984, 1985). Gefen er a1 (1980) showed that the Ising model on lattices with fractal 
dimensionality Dr lying between one and two only presents a non-vanishing critical 
temperature if the order of ramification (Mandelbrot 1982) is infinite. This is one of 
the reasons why Sierpinski carpets ( sc)  can be appropriate to investigate critical 
phenomena in systems of low dimensionality. In the same work, they also showed 
that the critical exponents of the sc depend not only on Dr and the spin dimension 
but also on some topological parameters such as the connectivity Q, the lacunarity L, 
etc (Mandelbrot 1982). Another interesting feature of the fractals is that they are scale 
invariant but not translation invariant, except that in some special limits they regain 
this property. Moreover the relation between the sc and the analytical extension of 
hypercubic lattices, suggested by Gefen et af (1983b), is another important point that, 
no doubt, deserves a better understanding. 

In  this work we intend to make a quantitative analysis of the q-state Potts ferromag- 
net on sc. We also calculate the correlation function low- and high-temperature limits 
of these sc and compare them with those obtained by analytical extension hypercubic 
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lattices. The sc are simulated by appropriate hierarchical lattices (HL) (Berker and 
Ostlund 1979, Griffiths and Kaufman 1982, Melrose 1983a, b, Kaufman and Griffiths 
1984, Tsallis 1985, Hu 1986, Hauser and Saxena 1986). The H L  are known to provide 
accurate results for the critical frontiers (Reynolds et a1 1977, Stinchcombe 1979, Levy 
et a1 1980, de Magalhies et a1 1981, Oliveira and Tsallis 1984, da Silva et al 1984). 
They also yield high- and low-temperature limits which are in excellent agreement 
with those associated with hypercubic lattices of integer dimensions (Martin and Tsallis 
1981, Curado et a1 1981, Curado and Hauser 1986). We find real space renormalisation, 
which is exact on the H L  (Potts model), to be a suitable technique for our purposes. 

This paper is organised as follows. In 5 2 we consider a Potts model on appropriately 
chosen HL that simulate the sc. From the basic cell of each one of these HL we obtain 
two graphs (which also generate other ones hereafter referred to as M-type and K-type 
graphs) that contribute to the correlation function high- and low-temperature-behaviour 
dominant terms. It can be shown that the M- and K-type graphs coincide with those 
obtained if we make use of the anisotropic bond-moving schemes (Migdal 1975, 
Kadanoff 1976) on the sc. In D 3 we calculate the critical frontiers of three sc through 
the use of the HL and those generated by the M- and K-type graphs. We verify 
quantitatively how these critical frontiers change with q and compare the frontiers 
coming from the different graphs. 

In D 4 the M- and K-type graphs are used to obtain the two-site correlation function 
high- and low-temperature behaviour of the sc (we assume that these behaviours are 
the same as those of the appropriate HL) and to compare them with those corresponding 
to the analytical extension of equal dimension. 

U M S Costa, I. Roditi and E M F Curado 

Our conclusions are summarised and discussed in 5 5 .  

2. Renormalisation group scheme for the Sierpinski carpet 

In order to understand the sc better we will begin with a simple one. The starting 
point of its construction is a unit square which, in the first step, we divide into b2 
small squares and cut out symmetrically 1’ centre squares. Then, in the next step we 
divide each of the remaining b2 - 1’ squares and, once more, cut out 1‘ squares. The 
sc is obtained by the exhaustive repetition of this procedure (see figure 1) and its 
fractal dimension is (Mandelbrot 1982) 

Df= In(b2- 12)/ln b. (1) 
It is possible to consider a Potts model on the sc, considered as a lattice, by putting 

a q-state Potts variable (T on each lattice site of the ‘microscopic’ one (see Gefen er 

Figure 1. Iteration of the Sierpinski carpet. ( a )  Initial unit square with b =3, I =  1. ( b )  
The first iteration for b = 5 ,  I = 3. ( c )  The second iteration for b = 3, I = 1. 
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a1 1980). The Hamiltonian H is given by 

H = -sJ c 6,,# - s J w  c 6m,m,,, (2) 
( 1 . J )  ( 1 .  m ) ’  

where ( I ,  m)’ means the nearest-neighbour sites that are in the border of the eliminated 
areas and ( i , j )  means the remaining nearest-neighbour ones. 

It has been shown in several works that appropriate hierarchical lattices provide 
good results to the square lattice (Reynolds et a1 1977, Stinchcombe 1979, Curado et 
a1 1981, Oliveira and Tsallis 1982, Costa and Tsallis 1984) and other hypercubic lattices 
of integer dimension (da Silva et a1 1984, Curado and Hauser 1986). Therefore we 
believe that lattices with non-integer dimensionality, like the sc, can also be well 
approximated by well chosen HL. We must have two aggregation procedures corre- 
sponding to the coupling constants K = J / k B T  and K ,  = J,/k,T (see Griffiths and 
Kaufman (1982) for a comment about the aggregation procedure). These are shown 
in figure 2 for the sc corresponding to b = 3, 1 = 1. Thus we have two hierarchical 
lattices, one simulating the neighbourhood of the interface between two squares as 
shown in figure 2(a)  and the other simulating the neighbourhood of the interface 
between a square and an eliminated square as in figure 2( c). These hierarchical lattices 
are shown in figure 3. Note that these lattices are a kind of HL called ‘non-uniform’ 
by Griffiths and Kaufman (1982) (see figure 4 in their work). Let us also stress that 
the ‘diamond’ lattice with non-iterated bonds exhibited in the same work can be seen 
as a type of non-uniform hierarchical lattice if we adopt the scheme shown in our 

Figure 2. Construction of an H L  adequate to simulate the sc with b = 3 ,  I =  1. ( a ) ,  ( b )  
and ( c )  show how K ’  is obtained. ( d ) ,  ( e )  and (f) show how K L  can be performed. Full 
lines denote the coupling constant K whereas broken lines denote K , .  
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l a )  1 I -- 

Figure 3. Non-uniform hierarchical lattices corresponding to ( a )  coupling constant K (full 
lines) and ( b )  K ,  (broken lines). The ‘internal structure’ of the full lines is always as in 
( a )  and that of the broken lines as in ( b ) .  

figure 4. This class of hierarchical lattices mixes two (or more) types of bonds, each 
with its own aggregation scheme. In other words, the internal structure of a bond 
contains, besides the same bond, other ones with a different internal structure. The 
dimensionality and aggregation number of this class of hierarchical lattices are interest- 
ing questions that, no doubt, deserve attention. The procedure is similar for other b 
and 1 values (other sc). Let us now introduce the variables t and t ,  (that are respectively 
the two-site correlation function of a bond with J;, = J  or J,) as 

( 3 b )  

With these variables, the renormalisation equations (with q = 2 for simplicity) corre- 
sponding to figures 2 ( e )  and (f), obtained by the break-collapse method (Tsallis and 
Levy 1981) are (where t’ and t k  are the two-site correlation functions of the graphs 

1 -exp(-qJ,/ksT) 
1 + ( 4  - 1 ) exp(-qJ,/ kB TI * 

1, = 

9 

ib l  ~ 

I 

A 

? 

I 

A 

? 

I 

Figure4. Diamond hierarchical lattice with non-iterated bonds considered as a non-uniform 
hierarchical lattice corresponding to ( a )  coupling constant K (full lines) and ( b )  K, 
(broken lines). Clearly the aggregation scheme (or internal structure) for the full  and 
broken lines are different. The aggregation scheme in ( a )  mixes both lines. 
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shown in figures 2 ( e )  and (f) respectively): 

t ’  = (2t2t,  + t 3  +4t3r,+ 4t4+6t4t, +4t5 + 8 t 5 t ,  + 4 f 5 t ~ + 6 t 6 t , +  8 t6 t i  + 2t7 +4t7t, 

+4t7t i+4t8+ 2t8t,+ r l ’ ) (  1 +4t3+2t3t,+2t4+4t4tw +4t4t i+6t5t ,  

+ 8r5tZ,+4t6+ 8 t 6 t ,  +4t6tZ,+4f7 +6t7t,  + r8+4t8t, +2r9t,)-’ ( 4 a )  

(4b)  t : , = ( t 2 t , +  t4 t ,+4t~t ,+t l ,+t2 t~) ( l  +2t2t,+ t 2 t ; +  t4t;+2t2t;+ t 2 t : ) - I .  

These equations give us the critical frontiers (and critical exponents) corresponding 
to the case b = 3 ,  I 1 .  It is important to observe that the application of the break- 
collapse method to solve a graph G always leads to functions x’  =fG(x) where f G ( x )  
can be written as 

f G ( X )  = N G ( x ) / D G ( x )  ( 5 )  

where N , ( x )  (and D G ( x ) )  are polynomials of x (see equations (4a )  and (4b) ) .  
Alternatively, equations (4a) and (4b)  can also be written as (for all values of 4): 

t ’=[ t4N[G,]+4 t3 (1  - t )N[G2]+2r2(1  - t ) ’N[G3]+2t2(1 - r)’N[G4] 

+ 2t2( 1 - t ) ’ N [  G5]+ 4t( 1 - t ) 3 N [  G6] + ( 1  - tl4N[ G711 

x [ t4D[G,]+4t3(1  - t )D[G2]+2t2(1  - t)’D[G3]+2t2(1 - t I2D[G4] 

+ 2 t 2 (  1 - t ) ’D[G5]+4t( l  - t )3D[G6]  + ( 1  - t)4D[G7]1-’ ( 6 a )  

X [ t 2 D [ G 8 ] + 2 f ( l  - t ) D [ G 9 ] + ( l  - t )2D[G,o]]-’  (6b )  

t k =  [ f 2 N [ G 8 ] + 2 f ( l  - t ) N [  G9]+ ( 1  - t)’N[Glo]] 

where N [  G,] and D[ G,] are the numerator and denominator polynomials, respectively, 
(in t and t,) corresponding to graph [G,]  (see figure 5 ) .  When t + O  ( k , T / J + c o )  
equations (6a )  and (6b )  become 

‘ 6  GI Gs 69 610 

Figure 5. Graphs that arise when we make the break-collapse method. G,-G, on the H L  
given by figure 2 ( e )  and G8-GL0 on the H L  given by figure 2(f) .  
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showing that the graphs G, and G,, (graphs of M-type) provide the leading term of 
t '  and t l ,  respectively, at high temperature. In the case t + 1 ( k , T /  J + 0) a similar 
analysis shows that the dominant terms of t' and tL are given by the graphs G,  and 
G8, respectively (graphs of K-type). We note that the K-type graphs corresponding 
to t '  and t:  are the same as used by Gefen et a1 (1984) (see their figures 2 and 3), 
obtained by Kadanoff bond-moving schemes. For other values of b our construction 
always obtains, in the t + 1 limit, their corresponding graphs. We can note also that 
the M-type graphs G, and GI, correspond to the Migdal approximation (Migdal 1975) 
to figures 2 ( a )  and (c) ,  respectively. The anisotropic bond-moving scheme (x decima- 
tion (Kadanoff 1976))  on the clusters of figures 2 ( b )  and ( d )  provides the K-type 
graphs corresponding to the renormalisation of the y direction coupling constant. 
Through a a / 2  rotation in these figures the x decimation now provides the M-type 
graphs corresponding to the x direction coupling constant. 

It is worth observing that our kind of approximation, through HL, always gives a 
Migdal-type graph (bond-moving schemes adopted by Gefen et a1 (1984)) for the high- 
( I O W - )  temperature leading term. 

3. Potts model critical frontiers to Sierpinski carpets 

As pointed out by Gefen et a1 (1984) there are three basic situations for the critical 
frontiers of the sc defined early in 0 2 .  These situations are: (i) b = 3, 1 = 1, ( i i )  b = 1 + 2, 
b > 2, ( i i i )  b > 1 + 2 .  We want to analyse their critical frontiers for several values of q. 

In order to compare our results with those of Gefen et a1 (1984) we have studied 
the frontiers corresponding to the appropriate HL, and to the hierarchical lattices 
generated by the K-type (HL,  t -f 1 limit) and M-type (HL,  t + O  limit) graphs. The 
critical frontiers corresponding to the case b = 3, 1 = 1 are shown in figure 6.  In  figure 
6 ( a )  the H L  (schemes represented by figures 2 ( e )  and (f) are used. In figure 6 ( b )  the 
H L  generated by the K-type graphs G ,  and G, (that are the same as utilised by Gefen 
et a1 1984) are used. Finally in figure 6 ( c )  the M-type graphs G, and Glo (Migdal 
type) are used. G I  and G7 correspond to t'  and G, and Glo correspond to tb. As 
expected, the ordered phase in all of them increases with increasing q. We believe 
that our H L  approach to the sc yields a better approximation than that provided by 
H L  generated by a basic cell of K-type or M-type. As a quantitative example we can 
see the bond percolation problem ( q  = 1) in the sc. The fractal dimension of this sc 
( b  = 3, 1 = 1) is Df= 1.893. Thus it is reasonable to expect that its critical point p c  is 
slightly greater than the bond-percolation critical point of the square lattice ( p c  = 0.5) 
because there are now holes in the lattice. In figure 6(  a )  we can see that the intersection 
of the q = 1 critical frontier with the t = t, line yields pc  = 0.53 (which is certainly a 
good approximation for the exact p c  of the sc bond percolation). The values of p c  
from figures 6 ( b )  and (c )  are, respectively p c  = 0.33 and p c  = 0.75. Critical points for 
other values of q (obtained in a similar way) are shown in table 1. The stability 
conditions of the fixed points are the same as obtained by Gefen et a1 (1984) (bond- 
moving schemes, q = 2 )  for all values of q and for the two other approximations (see 
figures 6 ( a )  and (c)).  For the localisation of the fixed points E and F (that depend 
on q )  see table 1. 
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0 0.5 
t 

1 .o 0 0.5 1 n 
t 

Figure 6. Sierpinski carpet ( b  = 3, I = 1)  critical frontiers in f - f, space: ( a )  through the 
H L  of figure 2, ( b )  through the corresponding K-type graph, ( c )  through the corresponding 
M-type graph, ( d )  showing the three approximations ( H L ,  K-type and M-type graphs) for 
9 = 2. The points A, B, C, D, E and F are fixed points whose stabilities are given by the 
arrows. 

In figure 6 ( d )  we compare the three approximation schemes. We notice that in 
the low-temperature limit ( t -  1) our H L  treatment has the same behaviour as the one 
of the H L  associated to the K-type graphs, as was pointed out in 5 2. 

We have also calculated the phase diagrams for the cases b = 5 ,  1 = 3 and b = 7 ,  
1 = 3.  Some quantitative results are shown in table 1. 

4. Sierpinski carpets and the hypercubic lattices with non-integer dimensionality 

Another interesting feature concerning the sc of low lacunarity is their possible relation 
with the abstract analytic continuation of hypercubic lattices to non-integer dimension- 
alities, as suggested by Gefen et al  (1983b). 
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These low-lacunarity sc (see Gefen er a1 1984) can be constructed as follows. Given 
a square (of unit area), we divide it into b’ small squares, each of which is subdivided 
into c2 subsquares. In each one of the c2 squares we cut out I’ ( I  < c )  subsquares. The 
procedure is then repeated for the remaining subsquares until one reaches microscopic 
length scales (see figure 7) .  The fractal dimension associated with this sc is 

Df = In[ b’( c2 - 12)]/ln bc. 

We associate a q-state Potts variable with each site, a coupling constant K ,  with 
each bond at the border of an eliminated area and the coupling constant K otherwise 
(nearest neighbour only). Gefen et a1 (1983b) studied the Ising model on these sc 
and obtained that, in the low-lacunarity limit ( c  + 00) and for c - I fixed, the first-order 
thermal critical exponent is y = E + ( E ’ )  ( E  = d - 1) which is the same value obtained 
by analytic continuation of the hypercubic lattices to d = 1 + E.  This and other facts 
suggest that the sc so constructed could be a geometrical implementation for the 
analytic extension of hypercubic lattices. In the same work they suggest that other 
renormalisation group schemes could be used and that in particular the general- 
dimensional high- and low-temperature expansions of the sc could be compared with 
that of hypercubic lattices of non-integer dimension. Our alternative renormalisation 
group scheme (through an appropriate HL)  allows us to test the high- and low- 
temperature expansions utilising the graphs of K- and M-type (that yield the two-site 
correlation function lower- and higher-temperature behaviour of the HL). The question 
is that, in the low-lacunarity limit ( c  +. a), the size of the HL basic cell goes to infinity 
and the expansions must describe the exact behaviour of the sc (at least the high- and 
low-temperature behaviour must be described correctly). Let us say that, intuitively, 
the contribution of the surface effect caused by the two terminal sites of the H L  decreases 
when the H L  basic cell size goes to infinity. In integer dimension this is true (see, e.g., 
Curado et a1 1981, Martin and Tsallis 1981, Kaufman and Mon 1984, Curado and 
Hauser 1986) and there is no reason to believe that this does not happen for the sc 
(which have non-integer dimensionality). 

( b )  

Figure 7. Sierpinski carpet with b = 2, c = 5 and I = 3 :  ( a )  first iteration, ( b )  second iteration. 
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That being so, in this section we shall use the H L  approximation to the sc of low 
lacunarity (c  + 03) and to hypercubic lattices and  compare them. The M- and K-type 
graphs, corresponding to the higher- and lower-temperature limits of the H L  basic cell 
constructed to simulate the sc (with b, c and  I ) ,  have the following recurrence equations 
for t and t,. 

For K-type graphs: 

For M-type graphs: 

Here D means dual and  the dual variable is defined as 

X D =  (1 - X ) [ 1 +  ( q  - 1)xI - l .  (10) 

Equations (8) are the same as equations (3) of Gefen et a1 (1983b) (written in a 
different form). In the high-temperature limit ( t ,  t, + 0) the leading terms of equations 
(9) are 

(9a') 

(9b') 

t!-2btb(c-l) bl t , + b ( c - I - l ) t b C + .  . .  
t k  - t ?  + btb't b'c"' + f[ b( c - 1 - 1) - 11 t b' + . . . . 

We remark that if c + cc and t ,  = j t ,  equations (9) are reduced to one and  the same 

The two-site correlation function high-temperature behaviour on hypercubic lattices 
equation. 

obtained through the H L  approximation can be expressed as 

t ' -  ( b C ) d - l t b '  +O( tb '+ ' )  t + 0. (11) 

Of course, this expression, obtained for integer values of d, can be analytically extended 
to d E (1,2).  We want to compare the high-temperature results from the sc (equations 
(9)) with those obtained from an analytical extension of hypercubic lattices to non- 
integer dimensions (equation (1 1)). For simplicity we will compare them in the case 
c + CO and 1 fixed. From equation (1') we see that the fractal dimension approaches 
two as 

If we take the expressions given in equations (9) along the line f, = f r  ( t ,  t ,  + 0) and  
consider the limit cited above, then we obtain the expression 

(13) 
If, as was claimed, the low-lacunarity sc is an  implementation of hypercubic lattices 

with non-integer dimensionality, the expressions given by equations (1 1) and (13) must 
be equal. 

Dr- 2 - 12/c2 In( bc) + . . . . (12) 

1'- b( c - I - 1) t " + O( t b c + l ) ,  

Then, matching the coefficients of thL and taking the limit, we find 

d - 2 -  ( I  + l ) / c  In(bc) t . . . . (14) 
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The imposition of equality among the correlation function high-temperature- 
behaviour dominant terms of the sc and hypercubic lattices of non-integer dimensional- 
ity leads to a value of d (given by equation (14)) unlike from the fractal dimension 
Df of the sc (given by equation ( 1 2 ) ) .  The low-temperature-behaviour dominant term 
of the sc two-site correlation function in the same limit ( D f +  2 )  yields the following 
expression for d :  

d - 2 - l / c l n ( b c ) +  . . .  (15)  

which is slightly different from equation (14) and also different from the fractal 
dimension D f  (equation (12)).  So we can conclude that the correlation function higher- 
and  lower-temperature behaviours of low-lacunarity sc are different from the same 
behaviours obtained by hypercubic lattices of non-integer dimensionality (in the 
neighbourhood of D = 2 ) .  

The numerical results obtained by Bhanot et a1 (1984, 1985) are not conclusive 
about this point because they cannot obtain, in computer simulations, the low-lacunarity 
limit of the sc. 

For the Ising model, Gefen et al (1983b) calculated, for D-. 1 ,  the sc thermal 
critical exponent (within the K-type approximation) and showed that it coincides with 
the hypercubic lattice value. In this particular limit our results confirm their conclusion. 

5. Conclusion 

In this paper we have studied the critical behaviour of the q-state Potts model on 
Sierpinski carpets. We have constructed hierarchical lattices that have been shown to 
be adequate to simulate the sc. The critical frontiers of several sc are obtained for 
several values of q and the numerical results can certainly be considered as good 
approximations for the exact ones. 

These hierarchical lattices enable us to study the low-lacunarity limit ( c  -. m) of 
the sc. Their high- and low-temperature-behaviour dominant terms of the two-site 
correlation function can be calculated and compared with the corresponding correlation 
function asymptotic behaviours of the analytical extension of hypercubic lattices to 
non-integer dimensionality D. We verify that these asymptotic behaviours (sc and 
analytical extension of hypercubic lattices) coincide when D -. 1 but the same does nor 
happen when D -. 2 .  This fact leads us to believe that the low-lacunarity sc proposed 
by Gefen et a1 (1983b) may not, in general, be the correct geometric implementation 
of hypercubic lattices with non-integer dimensionality. 

The limit D-. 1 (where both the first-order thermal critical exponent and  the 
temperature asymptotic behaviours of the two-site correlation function of the sc and  
the hypercubic lattices with non-integer dimensionality coincide) certainly deserves 
special attention. The analysis of higher-order terms of the thermal critical exponent 
and correlation function could show whether or not the implementation is valid for 
this particular limit. 
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